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Abstract — Matrix factorization is applied to unsupervised linear 
unmixing for hyperspectral imagery. The algorithm, called non-
negative matrix factorization, is used. It imposes a constraint on 
the non-negativity of the amplitudes of the recovered endmember 
spectral signatures as well as their fractional abundances. This 
ensures the recovery of physically meaningful endmembers and 
their abundances. This algorithm is further modified to include 
the sum-to-one constraint such that the sum of the fractional 
abundances for each pixel is unity. Several practical 
implementation issues in hyperspectral image unmixng are 
discussed. Some preliminary results from AVIRIS experiments 
are presented. We also discuss the advantages and possible 
limitations of this method in hyperspectral image analysis. 

Keywords: matrix factorization; nonnegative matrix factorization; 
linear mixture model; unsupervised linear unmixing; hyperspectral 
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I.  INTRODUCTION  

Linear unmixing analysis is a well-known technique in 
remote sensing image analysis. It is based on the fact that the 
rough spatial resolution permits different materials present in 
the area covered by a single pixel. The linear mixture model 
says that a pixel reflectance in a visible-near infrared 
multispectral or hyperspectral image is the linear mixture from 
all independent pure materials (endmembers) present in an 
image scene [1].  

Let L be the number of spectral bands and r an L×1 
column pixel vector in a multispectral or hyperspectral image. 
Assume that there are P objects/materials (i.e., endmembers) 
present in an image scene, which construct an L×P signature 
matrix [ ]PmmmM 21= , where jm  represents the j -th 

endmember. Assume that ( )TPααα 21=α  is a p×1 
abundance vector associated with r, where jα  denotes the 
abundance fraction of the jm  in r. In the linear mixture 
model, r is considered as the linear mixture of m1, m2, …, mP 
as  
 nMαr +=  (1) 
where n is included to account for either measurement or 
model error [1].  If M is assumed to be known and keeps to be 

the same for all the pixels, then the problem is to estimate α 
which is changed with pixel. 

A typical method to estimate α is the least squares 
approach. The estimate from the least squares solution is the 
one that minimizes the estimation residual  

 ( ) ( )MαrMαr
α

−− Tmin . (2) 

In order for the estimated abundance vector α to faithfully 
represent an image pixel vector r, two constraints are generally 
imposed on α in Eq. (1): (a) abundance sum-to-one constraint, 

referred to as ASC, 1
1

=∑
=

P

p
pα ; and (b) abundance non-

negativity constraint, referred to as ANC, 0≥pα  for all 
Pp ≤≤1 . There is no closed-form solution to such a 

constrained linear unmixing problem. So an iterative method 
generally is used. 

In real applications, endmember signatures in M may be 
unknown and difficult to obtain. Then the task is much more 
challenging since both M and α need to be estimated. 
Intuitively, the M matrix should be nonnegative. Otherwise, 
the solution may not be physically realistic.  

II. NON-NEGATIVE MATRIX FACTORIZATION 

The linear unmixing problem in Eq. (1) can also be solved 
by matrix factorization. Recently, non-negative matrix 
factorization (NMF) is developed [2-7]. Given a non-negative 
data matrix X of size L×IJ, NMF can find an approximate 
factorization ASX ≈  into non-negative factors A of size L×P 
and S of size P×IJ. The non-negativity constraint imposed on 
A and S makes them purely additive, in contrast to other factor 
analysis techniques such as principal component analysis 
(PCA) and independent component analysis (ICA). Let IJ be 
the number of pixels in an image of size I×J, and let 

{ }IJ
ii 1== rX  be the data matrix including all the pixel vectors. 

Then the linear mixture model in Eq. (1) can be represented as 

 NASX +=  (2) 
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where A corresponds to the endmember matrix M, { }IJ
ii 1== αS  

is the abundance matrix with the i-th column vector 
representing the abundances for the i-th pixel, and { }IJ

i 1== nN . 
Eq. (2) will be used thereafter. 

 The formulation of the NMF algorithm of Lee and Seung 
in [4] is reviewed as follows. Assume noise is Gaussian 
distributed. The maximum likelihood estimation of A and S 
are 

 

( )

( )( )
2minarg       

|logminarg       

|maxargˆ,ˆ

ASX

SA,X

SA,XSA

SA,

SA,

SA,

−=

−=

=

p

p

 (3) 

 subject to 0≥A , 0≥S  

Define 2ASX −=F . The gradients with respect to A and S 
are given by 

 ( ) ( )( )pl
T

pl
T

plA
F

,,
,

2 ASSXS −−=
∂
∂  

 ( ) ( )( )ip
T

ip
T

ipS
F

,,
,

2 ASAXA −−=
∂
∂  (4) 

where Ll ,,1= , Pp ,,1= , and IJi ,,1= are indexes for 
A and S. Then the adaptation functions can be constructed as 

 ( ) ( )( )pl
T

pl
T

plplpl AA ,,,,, ASSXS −+← δ  

  ( ) ( )( )ip
T

ip
T

ipipip SS ,,,,, ASAXA −+← η  (5) 

where pl ,δ  and ip,η  are learning rates. In [4] it is shown that 

by choosing them as ( ) pl
T

plpl A ,,, / ASS=δ  and 

( ) ip
T

ipip S ,,, / ASA=η , the adaptation functions become 
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which is a multiplicative update rule.  

The update rule in Eq. (6) is proved to converge to at least 
a local optimal maximum likelihood solution [5]. We can see 
that the advantage of using such a multiplicative update rule in 
Eq. (6) over the additive rule in Eq. (5) is the guarantee of 
non-negativity of A and S, provided that they are initiated 
non-negative and the data matrix X is non-negative. Also, it is 
unnecessary to choose any learning rate. 

III. CONSTRAINED MATRIX FACTORIZATION FOR                       
HYPERSPECTRAL IMAGE LINEAR UNMIXING  

The NMF algorithm has been applied to some real 
applications [8-10]. Here we discuss several practical 
implementation issues when it is applied to linear unmixing of 
hyperspectral imagery.  

Sum-to-one Constraint 

The NMF needs to be modified such that the sum-to-one 
constraint can be satisfied. This can be achieved by adding one 
more row of the data matrix X and A as 1, i.e.,     

 NSANS
1
A

1
X

+=+







=







 ~
~TT   (6) 

where 1 and 1~ are column vectors of size IJ×1 and P×1, 
respectively, with all the elements equal to 1. Then the last row 
of A~ will not participate the adaptation.  

Estimation of the Number of Factors 

The number of factors P ought to be used is unknown, 
which is the number of endmembers present in an image scene. 
If the value of P is changed, then the final results of A and S 
are obviously different. This is a common problem for any 
factor analysis based technique.  

The hypothesis testing based eigen-thresholding method in 
[11] can be applied to estimate the number of distinctive 
signals in an image scene, and this number is used as P. 

Algorithm Initiation 

The algorithm may be sensitive to the initial condition. 
There are different ways to initialize the L×P non-negative A 
matrix: 1) A is randomly created within the dynamic range of 
the image; 2) P pixel vectors are uniformly selected from the 
image scene as an initial A; 3) Perform vector quantization 
(VQ) first and the P clusters are used to construct the A. In our 
research, we use the first method to randomly initialize the A. 
After A is initiated, S is initiated using the estimate from the 
fully constrained least squares linear unmixing method in [12]. 

Data Pre-processing 

All the water absorption bands and low signal-to-noise ratio 
bands are removed before linear unmixing. Due to sensor 
noise, some pixel elements may have negative values, which 
are replaced with 0. 

To summarize, the steps for estimating the endmember 
matrix A and abundance matrix S are listed as follows. 

1) Construct the data matrix X~  by removing bad bands, bad 
pixel points, and adding the last row as 1. 

2)  Estimate the number of factors P. 
3)  Initiate A~  as an L×P matrix and adding the last row as 1, 

and initiate S by finding the FCLSLU estimate. 



4) Update A~ and S using Eq. (6) with the last row of A~  
unchanged. 

 

IV. EXPERIMENT 

The AVIRIS Lunar Lake image data was used in computer 
simulation. The original 200×200 subimage was shown in 
Figure 1. According to the prior information, there are five 
materials in this scene. So in this preliminary experiment we 
set P equal to 5. Then five endmember signatures were 
randomly initialized. After about 1000 iterations, the five 
fractional abundance images were generated as shown in 
Figure 2. The algorithm actually converged very fast, because 
after about 50~100 iterations there were no obviously 
difference in the classified images although the estimation 

error 2ASX −=F  continued to gradually decrease. 

 
Figure 1.   A band subimage of AVIRIS Lunar Lake scene.   

             
                    Vegetation                                         Rhyolite 

               
                     Shade                                               Playa Lake 

 
Cinder 

Figure 2.   Classification results using constrained matrix factorization.   

Compared to the unsupervised least squares result [12], we 
can see that “Vegetation”, “Shade” and “Cinder” were 
correctly classified, but “Rhyolite” and “Playa lake” were not 
well separated. 

VII. DISCUSSION 

The preliminary experiment shows that the constrained 
matrix factorization algorithm may be feasible to linear-
unmixing based hyperspectral image classification, but its 
performance needs to be further improved. The major problem 
is that the algorithm is sensitive to the initial conditions. How 
to find an appropriate A initial matrix should be investigated.   

The algorithm in this paper basically is maximum 
likelihood estimation with the assumption that noise is 
Gaussian distributed. But we know that noise may not be well 
modeled by Gaussian distribution. So a better noise model is 
required to improve the overall performance of this algorithm 
for hyperspectral image analysis. 
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